首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3066篇
  免费   460篇
  国内免费   377篇
化学   2384篇
晶体学   26篇
力学   187篇
综合类   40篇
数学   323篇
物理学   943篇
  2024年   5篇
  2023年   61篇
  2022年   66篇
  2021年   113篇
  2020年   140篇
  2019年   129篇
  2018年   94篇
  2017年   104篇
  2016年   140篇
  2015年   131篇
  2014年   186篇
  2013年   222篇
  2012年   241篇
  2011年   291篇
  2010年   192篇
  2009年   162篇
  2008年   173篇
  2007年   169篇
  2006年   151篇
  2005年   136篇
  2004年   115篇
  2003年   93篇
  2002年   95篇
  2001年   83篇
  2000年   78篇
  1999年   79篇
  1998年   78篇
  1997年   50篇
  1996年   57篇
  1995年   42篇
  1994年   43篇
  1993年   29篇
  1992年   39篇
  1991年   15篇
  1990年   24篇
  1989年   13篇
  1988年   9篇
  1987年   5篇
  1986年   10篇
  1985年   8篇
  1984年   14篇
  1983年   8篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1957年   2篇
排序方式: 共有3903条查询结果,搜索用时 281 毫秒
71.
用薄样X射线荧光光谱法测定较区91老年冠心病患者及63名老年健康人血清Zn、Cu、Ca、Mg、四种元素的含量。结果表明:牧区老年冠心病患者血清中Zn、Cu、含量与健康组比较无显著差异,但两者的比值高于对照组,可能与牧区牧民饮食习惯有关;老年冠心病组血清Ca、Mg含量显著低于对照组。  相似文献   
72.
手性配体的空间结构与产物对映选择性的关系   总被引:2,自引:0,他引:2  
首次采用4-烷氧羰基噻唑烷、E唑烷作为手性配体,诱导烷基锌对醛类的亲核加成反应,获得产物是烷基化的醛,最高达90%ee,产率98%的(S)-二级醇。系统地考察了该类手性配体三维空间结构变化与产物对映选择性的关系,当配体4-位烷氧羰基上的R、2-位R′基和环体上原子X发生变化时都会引起产物(S)-二 级醇的对映选择性发生规律性变化。对五种不同结构的底物醛在同一手性配体催化下,诱导烷基锌对醛类的亲核加成反应,底物结构变化也会引起(S)-二级醇对映选择性变化。  相似文献   
73.
Three anti-EGF receptor MoAbs were used in these studies. Administration of MoAbs 3 and 176 inhibited tumor formation in nude mice by CNE-2, a poorly differentiated nasopharyngeal carcinoma cell line and A431, an epidermoid carcinoma cell line. When the same MoAbs were used in treatment against HeLa, a cervical carcinoma, tumor growth was not affected. The number of EGF receptors and apparent dissociation constants for 125I-EGF on CNE-2 and A431 was 1.3 x 10(5)/cell (Kd 7.7 x 10(-8) mol/L) and 1.4 x 10(6)/cell (Kd 2.4 x 10(-9) mol/L), respectively. Both MoAbs 3 and 176, capable of competing with EGF for receptor binding, showed significant tumor growth inhibition. MoAb 101 was incapable of blocking the binding of EGF to its receptor, and not as effective as MoAbs 3 and 176 in tumor growth inhibition. Our observation is that the MoAb anti-EGF receptor is cytostatic rather than cytocidal, in vitro against CNE-2 and A431.  相似文献   
74.
Scientific research training is an essential part of undergraduate learning, which plays an important role in improving students' knowledge utilization and scientific literacy. Taking the participation process of "Energy conservation and emission reduction competition" as an example, this paper briefly introduces the undergraduate scientific research training of students majoring in polymer materials and engineering from their own perspective, and the way to combine the discipline and school characteristics to reflect the thinking of engineering students in scientific research and practical application.  相似文献   
75.
吸电子取代基(2-硝基)金属卟啉的轴向加合反应的研究   总被引:1,自引:0,他引:1  
本文报道了用电子吸收光谱和电化学方法系统地研究卟啉环上具有吸电子取代基(—NO_2)的四苯基卟啉[H_2TP(2-NO_2)P]的Zn、Ni、Cu、Co、Mn、Fe的配合物与一系列含N有机碱的加合作用,测定了加合常数、加合分子数,总结了吸电子基团对金属卟啉的轴向效应以及中心金属离子和卟啉环氧化还原性的影响。  相似文献   
76.
Two new coordination polymers of PbII complexes with bridging 4,4′‐[(1E)‐ethane‐1,2‐diyl]bis[pyridine] (ebp), thiocyanato, and acetato ligands, [Pb(μ‐SCN)2(μ‐ebp)1.5]n ( 1 ) and {[Pb(μ‐OAc)(μ‐ebp)](ClO4)}n ( 2 ), were synthesized and characterized by elemental analysis, FT‐IR, 1H‐ and 13C‐NMR, thermal analysis, and single‐crystal X‐ray diffraction. In 1 , the Pb2+ ions are doubly bridged by both the ebp and the SCN ligands into a two‐dimensional polymeric network. The seven‐coordinate geometry around the Pb2+ ion in 1 is a distorted monocapped trigonal prism, in which the Pb2+ ions have a less‐common holodirected geometry. In 2 , the Pb2+ ions are bridged by AcO ligands forming linear chains, which are also further bridged by the neutral ebp ligands into a two‐dimensional polymeric framework. The Pb2+ ions have a five‐coordinate geometry with two N‐atoms from two ebp ligands and three O‐atoms of AcO. Although ClO acts as a counter‐ion, it also makes weak interactions with the Pb2+ center. The arrangement of the ligands in 2 exhibits hemidirected geometry, and the coordination gap around the Pb2+ ion is possibly occupied by a configurationally active lone pair of electrons.  相似文献   
77.
Altered collagen and elastin content correlates closely with remodeling of the arterial wall after injury. Optical analytical approaches have been shown to detect qualitative changes in plaque composition, but the capacity for detection of quantitative changes in arterial collagen and elastin content in vivo is not known. We have assessed fluorescence spectroscopy for detection of quantitative changes in arterial composition in situ, in rabbit models of angioplasty and stent implant. Fluorescence emission intensity (FEI) recorded at sites remote from the primary implant site was correlated with immunohistochemical (IH) analysis and extracted elastin and collagen. FEI was significantly decreased (P<0.05) after treatment with anti-inflammatory agents, and plaque area decreased on comparison with saline-treated rabbits after stent implant or angioplasty (Por=0.961) analysis were detected by multiple regression (MR) analysis. Good correlations also were found for FEI with elastin and collagen measured by high-performance liquid chromatography; MR analysis provided highly predictive values for collagen and elastin (R2>or=0.994). Fluorescence spectroscopic analysis detects quantitative compositional changes in arterial connective tissue in vivo, demonstrating changes at sites remote from primary angioplasty and stent implant sites.  相似文献   
78.
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes.

Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.

The cell walls of terrestrial plants primarily comprise the polysaccharides cellulose, hemicellulose, and pectin, as well as the heterogeneous aromatic polymer, lignin. In nature, carbohydrates derived from plant polysaccharides provide a massive carbon and energy source for biomass-degrading fungi, bacteria, and archaea, which together are the primary organisms that recycle plant matter and are a critical component of the global carbon cycle. Across the various environments in which these microbes break down lignocellulose, a few known enzymatic and chemical systems have evolved to deconstruct polysaccharides to soluble sugars.1–6 These natural systems are, in several cases, being evaluated for industrial use to produce sugars for further conversion into renewable biofuels and chemicals.From an industrial perspective, overcoming biomass recalcitrance to cost-effectively produce soluble intermediates, including sugars for further upgrading remains the main challenge in biomass conversion. Lignin, the evolution of which in planta provided a significant advantage for terrestrial plants to mitigate microbial attack, is now widely recognized as a primary cause of biomass recalcitrance.7 Chemical and/or biological processing scenarios of lignocellulose have been evaluated8 and several approaches have been scaled to industrial biorefineries to date. Many biomass conversion technologies overcome recalcitrance by partially or wholly removing lignin from biomass using thermochemical pretreatment or fractionation. This approach enables easier polysaccharide access for carbohydrate-active enzymes and/or microbes. There are however, several biomass deconstruction approaches that employ enzymes or microbes with whole, unpretreated biomass.9,10 In most realistic biomass conversion scenarios wherein enzymes or microbes are used to depolymerize polysaccharides, native or residual lignin remains.11,12 It is important to note that lignin can bind and sequester carbohydrate-active enzymes, which in turn can affect conversion performance.13Therefore, efforts aimed at improving cellulose binding selectivity relative to lignin have emerged as major thrusts in cellulase studies.14–25 Multiple reports in the past a few years have made exciting new contributions to our collective understanding of how fungal glycoside hydrolases, which are among the most well-characterized cellulolytic enzymes given their importance to cellulosic biofuels production, bind to lignin from various pretreatments.15,17 Taken together, these studies have demonstrated that the Family 1 carbohydrate-binding modules (CBMs) often found in fungal cellulases are the most relevant sub-domains for non-productive binding to lignin,15,17,20,26 likely due to the hydrophobic face of these CBMs that is known to be also responsible for cellulose binding (Fig. 1).27Open in a separate windowFig. 1Model of glycosylated CBM binding the surface of a cellulose crystal. Glycans are shown in green with oxygen atoms in red, tyrosines known to be critical to binding shown in purple, and disulfide bonds Cys8–Cys25 and Cys19–Cys35 in yellow.Furthermore, several studies have been published recently using protein engineering of Family 1 CBMs to improve CBM binding selectivity to cellulose with respect to lignin. Of particular note, Strobel et al. screened a large library of point mutations in both the Family 1 CBM and the linker connecting the catalytic domain (CD) and CBM.21,22 These studies demonstrated that several mutations in the CBM and one in the linker led to improved cellulose binding selectivity compared to lignin. The emerging picture is that the CBM-cellulose interaction, which occurs mainly as a result of stacking between the flat, hydrophobic CBM face (which is decorated with aromatic residues) and the hydrophobic crystal face of cellulose I, is also likely the main driving force in the CBM-lignin interaction given the strong potential for aromatic–aromatic and hydrophobic interactions.Alongside amino acid changes, modification of O-glycosylation has recently emerged as a potential tool in engineering fungal CBMs, which Harrison et al. demonstrated to be O-glycosylated.28–31 In particular, we have revealed that the O-mannosylation of a Family 1 CBM of Trichoderma reesei cellobiohydrolase I (TrCel7A) can lead to significant enhancements in the binding affinity towards bacterial microcrystalline cellulose (BMCC).30,32,33 This observation, together with the fact that glycans have the potential to form both hydrophilic and hydrophobic interactions with other molecules, led us to hypothesize that glycosylation may have a unique role in the binding selectivity of Family 1 CBMs to cellulose relative to lignin and as such, glycoengineering may be exploited to improve the industrial performance of these enzymes. To test this hypothesis, in the present study, we systematically probed the effects of glycosylation on CBM binding affinity for a variety of lignocellulose-derived cellulose and lignin substrates and investigated routes to computationally predict the binding properties of different glycosylated CBMs.  相似文献   
79.
With recent advances in the computer-aided synthesis planning (CASP) powered by data science and machine learning, modern CASP programs can rapidly identify thousands of potential pathways for a given target molecule. However, the lack of a holistic pathway evaluation mechanism makes it challenging to systematically prioritize strategic pathways except for using some simple heuristics. Herein, we introduce a data-driven approach to evaluate the relative strategic levels of retrosynthesis pathways using a dynamic tree-structured long short-term memory (tree-LSTM) model. We first curated a retrosynthesis pathway database, containing 238k patent-extracted pathways along with ∼55 M artificial pathways generated from an open-source CASP program, ASKCOS. The tree-LSTM model was trained to differentiate patent-extracted and artificial pathways with the same target molecule in order to learn the strategic relationship among single-step reactions within the patent-extracted pathways. The model achieved a top-1 ranking accuracy of 79.1% to recognize patent-extracted pathways. In addition, the trained tree-LSTM model learned to encode pathway-level information into a representative latent vector, which can facilitate clustering similar pathways to help illustrate strategically diverse pathways generated from CASP programs.

Tree-structured long short-term memory neural model learns to understand the retrosynthesis design strategies from patent-extracted retrosynthetic pathway data.  相似文献   
80.
The biotransformation of bufalin by cell suspension cultures of Platycodon grandiflorus was investigated and two new biotransformed products were obtained,which was 3-epi-telocinobufagin and 3-epi-bufalin-3-O-β-D-glucoside.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号